Julien Jalâl Ed-Dine Weiss: A Novel Proposal for the Middle Eastern Qānūn

Stefan Pohlit

INTRODUCTION

The Arab zither $q \bar{a} n \bar{u} n$, with its abundant supply of pitches, is the most complex instrument in contemporary musical practice of the Middle East. In the Arab world-where all lutes with fixed frets have disappeared from use in traditional music - the $q \bar{a} n \bar{u} n$ provides a principal basis for the location of pitches and scales. As on the pedal harp, the arrangement of strings on the $q \bar{a} n \bar{u} n$ resembles a heptatonic scale. The invention of movable bridges next to each course of strings in the first half of the $20^{\text {th }}$ century enabled $q \bar{a} n \bar{u} n$ players to fine-tune their strings to produce reliable interval sizes during performance. In Turkey, these levers are called mandal-s, in the Arab world orab-s.

Most Arab $q \bar{a} n \bar{u} n$-s now incorporate a fundamental scale tuning of 24 "quarter tones" ${ }^{1}$ per octave, some of them containing an additional bridge for the larger semitone of maqūm hîgāz. Prior to the 1990s, there also existed an instrument with ten mandal-s, specifically built for the local tradition of Aleppo, Syria (Weiss 2009-11). The more complicated modern Turkish system divides each semitone into six different microtones and thus uses a 72-note scale that closely resembles the Byzantine tuning system after the reform of Chrysanthos ${ }^{2}$.

Current models of the $q \bar{a} n \bar{u} n$ reduce the traditional pitch inventory of Middle Eastern music by employing Western equal temperament rather than the just ratios of the theoretical tradition. A fundamental scale based on 12 -semitone equal temperament results in

[^0]transformations of the intonation and structure of important maqāmāt ${ }^{3}$. Furthermore, it affects the $q \bar{a} n \bar{u} n$'s resonance: as all strings on the $q \bar{a} n \bar{u} n$ remain constantly undamped, the vibrations produced during performance may cause beating across the instrument's whole range. The $q \bar{a} n \bar{u} n$'s intonation may also differ to an audible extent from that of a justly tuned tanbūr (the Ottoman long-necked lute) or from that of fretless instruments, such as the ' $\bar{u} d$ (the Arab lute) and the $n \bar{a} y$ (the open reed flute).

The heptatonic framework may be tuned by ear to produce Pythagorean interval sizes. In this case-which Weiss (2004) defines as "unequal Pythagorean temperament"-performers tune the strings by means of just intonation whereas the tuning of the mandal-s remains based on equal temperament. The difference of roughly two cents (subsequently abbreviated by the ϕ symbol) between an equal tempered and a harmonic fifth, however, multiplies with every further step in this procedure. Musicians have responded to this defect by basing the tuning on different fundamentals (such as basing the scale of 'aĝam either on C or on B-flat) and staying within the reach of only a few modulations. On the other hand, this method also replaces certain theoretical ratios by approximations.

In general performance practice, the $q \bar{a} n \bar{u} n$ often doubles melodic progressions in its lower octaves due to its usual range of three octaves and a fifth. Most Turkish qānūn-s, however, do not permit precise octave duplication for all microtonal pitches: different registers do not have the same number of mandal-s, and registers that only have eight instead of 12 mandal-s simply divide the equal-tempered semitone of $100 \notin$ according to microtonal steps of different size. Few performers can afford customized instruments with a more specified tuning, and Turkish $q \bar{a} n \bar{u} n$ players have agreed on 72-note equal temperament as their standard system (Beşiroğlu 2011).

[^1]
JULIEN JALÂL ED-DINE WEISS

Julien Jalâl Ed-Dine Weiss (b. 1953, Paris, France) started his musical career as a classical guitar player in Paris. In the early 1980s, fascinated by the intellectual dimensions of the Arab theoretical tradition, he moved to the Middle East and became a disciple of famous masters in various countries. As an Occidental convert to the maqām tradition, he gained broad recognition as a qanun player, founding [or and founded] one of today's foremost exponents of maqam music on the international stage, the Al-Kindi Ensemble. Since his early studies, Weiss felt dissatisfied with the tuning practices that he encountered among his fellow Arab and Turkish musicians. Whereas performers used to tune their instruments by means of equaltempered electronic devices, Weiss wished to recreate the intervallic ratios that he found described in ancient and modern treatises.

Like the French scholar of Hindustani music Alain Daniélou, Weiss has often regretted the hybridization of distinct traditions with their local customs and styles (Weiss 2009-11). Intonation in Middle Eastern music can vary substantially from one regional context to another. As a traveling artist, Weiss has been accustomed to performing with musicians from different backgrounds who would often disagree with the tuning preferences of other local traditions. In gradually extending the $q \bar{a} n \bar{u} n$'s pitch inventory, Weiss finally constructed a $q \bar{a} n \bar{u} n$ that would both honor the characteristics of diverse local contexts and create a basis for transnational agreement among the members of the Al-Kindi ensemble.

Having completed the process of calculation and construction by 1990, Weiss commissioned the Izmir-based instrument maker Ejder Güleç to build the first of several prototypes. The eighth (Q8) and ninth (Q9) of Weiss's prototypes constitute the most advanced $q \bar{a} n \bar{u} n$ tuning systems that have ever been built and also extend the instrument's usual range by an additional octave in the low register. In 2005, Weiss moved to Istanbul and, since that time, has owned both a historic Mamlouk mansion in the city of Aleppo and an
apartment in Galata. Considering his work in Aleppo as more or less complete, he conceived Q9 as a variation of the previous eight models that specifically addresses Ottoman-Turkish practice. He commissioned Kenan Özten of Istanbul to build Q9 in 2007.

THE $Q \bar{A} N \bar{U} N$ 'S PITCH INVENTORY IN THEORY AND PRACTICE

Discussion of traditional tuning in Middle Eastern music is extremely difficult due to considerable discrepancies between theory and practice. The great treatises of the 'Abbāsid era must have stood in firm conflict with the empirical methods of practical musicians (Wright 2005, 226; d’Erlanger 2001-V, 6; Chabrier 2001, 270). To judge from observations by d'Erlanger (2001-V, x) and Scott Marcus (1993, 40), it would seem evident that $20^{\text {th }}$ century performers have always been faced with the challenge of creating an applied theory of interval sizes in order to handle the conflicts between arithmetic calculation and oral transmission. Marcus defines this approach as a "meta-theory" because it shows how performers try to reconcile the postulations of written treatises with their practical experience.

The Tempered Semitone

The tempered semitone of 100ϕ, for example, is irrelevant to the context of Middle Eastern modes. The Pythagorean tradition on which these scales are founded prescribes a clear distinction between a minor semitone (leimma) and a major semitone (apotome). The size of the leimma corresponds, with 90.23ϕ, to the ratio $256 / 243$-the difference between a Pythagorean major third (81/64) and a perfect fourth (4/3). The Pythagorean apotome, with 113.69 d, corresponds to the ratio $2187 / 2048$, which is the difference between a major second $9 / 8$ and a leimma. Medieval theorists, such as al-Farābī in his Kitāb al-Kabīr (d'Erlanger 2001-I), based the hepatonic framework of their gamuts on Pythagorean tuning (During 1985, 80). In addition, harmonic ratios were introduced to represent the "quarter tone" steps that
referred to the influential early-‘Abbāsid lutenist, Manṣūr Zalzal al-Ḍārib (d. 791) (Farmer 2001, 118). In this manner, theorists combined two methods: although in Pythagorean tuning they derived the ratios of all intervals from powers of two and three, they deduced the additional interval sizes from superparticular ratios corresponding to successive partials in the harmonic series.

In addition, the apotome may be deduced from a simpler, harmonic ratio, thus corresponding to the superparticular fraction of 16/15-the difference between a harmonic third $5 / 4(386.31 \phi)$ and a perfect fourth $4 / 3(498.05 \phi)$-which equates to 111.73ϕ. As the second note in the $h i \hat{g} \bar{a} z$ genus should be pitched higher than in genre $k u r d \bar{l}$, some professional Arab $q \bar{a} n \bar{u} n$ models prior to the 1970s have included an additional lever to produce a supplementary, higher "flat" position. Consequently, they dispose of six interval sizes per string. While the distribution of mandal-s on such $q \bar{a} n \bar{u} n$-s maintains the tempered semitone as a default value, the lower "flat" position is always located at the distance of 100ϕ underneath the "natural" position. As shown in Figure 1, the roughly 15ϕ between the lower and the raised "flat" positions produce an approximated apotome in equal tempered tuning, as the distance between, e.g., C-natural and this additional mandal position on D is, accordingly, 115¢.

Figure 1. Average tuning of the additional mandal on the extended arab Qānūn.

ᄂ $15 \phi \perp$ 」 $85 \downarrow$

The heptatonic framework may be tuned according to Pythagorean ratios. Some Arab $q \bar{a} n \bar{u} n$ players continued to tune their instruments in this manner until the 1980s. More recently, the use of digital tuning devices has led to the disappearance of such customary tuning in favor of equal temperament (Weiss 2009-11). As the distance between the mandal-s remains fixed on all string courses, the interval sizes vary depending on which fundamental is chosen. This choice is taken in favor of the interval sizes that are required for the interpretation of a specific set of maqāmāt. Typically, the framework may be tuned to the scale of maqām' 'ầam (which corresponds to the Western major scale) and either be based on C-natural or on B-flat (Weiss 2009-11). Figures 2 and 3 show the interval sizes of minor and major seconds and thirds relative to C-natural in 'aĝam C and B-flat tuning. Within the first three string courses, the two alternatives only differ in regard to the thirds that they produce relative to C .

As described by Marcus, twelve semitone equal temperament often appears as a standard reference in contemporary contexts, even though it may sound confusing to state that "the" note E-flat "would be raised slightly" (Marcus 1993, 44). Both in theory and practice there exist, due to the Pythagorean, i.e. integer-ratio basis of even the earliest sources, two distinct E-flats-not only one, as suggested by a piano keyboard.

Neutral Seconds and Thirds

The Arab and Turkish traditions disagree about the intonation of the even more characteristic "neutral" scale degrees: segāh, 'awĝ, and their octave equivalents. The discussion of these notes has remained unresolved since the Congress of Cairo in 1932 (d'Erlanger 2001-V, 12). Theory and practice in the Arab world define the third between the notes $r \bar{a} s t$ and segāh as a "neutral" interval similar to a quarter tone. Since the Arel-EzgiUzdilek (AEU) system was formulated in Turkey during the 1930s as an extension of the

Figure 2. Minor and major seconds and thirds on the extended Arab Qānūn, based on C.

Figure 3. Minor and major seconds and thirds on the Extended Arab Qānūn, based on B-flat.

strictly Pythagorean system of Ṣafĩyy al-Dīn (ṢD), Turkish standard theory defines this interval by means of the complex Pythagorean ratio $8192 / 6561$ that, with 384.36 , , is almost identical with the interval of the harmonic third $5 / 4(386.314)^{4}$. In this high intonation, the

[^2]note segāh differs by only one Pythagorean comma (i.e., (81/64) / (8192/6561) $=$ $531441 / 524288$ or $23.46 \not \subset$) from the next higher note, būselik, which is traditionally conceived as a Pythagorean third ($81 / 64$ or $407.82 \not \subset$) over rāst. D'Erlanger suggested that the main reason for this general disagreement originated in the collision of the maqāmāt husayn $\bar{\imath}$ and rāst. The note segāh in husayn̄̄ should be tuned by means of the harmonic quarter tone 12/11 (150.64¢) above the note dugāh. In maqām rāst, the third, although being labeled under the same name (segāh), should be tuned about 32ϕ higher and thus correspond with the minor wholetone 10/9 (182.4申), as shown in Figure 4.

In practice, on the other hand, Arabs tune the note segāh in all contexts as a "quarter tone" while Turks tune it as a minor semitone (either as Pythagorean, i.e. 65536/59049 or 180.45d, or as superparticular ratio, i.e. $10 / 9$ or 182.40ϕ). The same mismatch also occurs in the interpretation of the historical Ottoman repertoire that developed as a revivalist movement after the discovery of Bobowski's maĝmū 'ah in the early 1970s (Ayangil 2011, Elçin 1976). Whereas Turkish musicians normally perform these compositions using Arel-Ezgi-Uzdilek's neo-Systematist scale (Arel 1993, Özkan 2006, Öztuna 1969), the Ottoman tuning system of the $17^{\text {th }}$ century must have resembled contemporary Arab, not Turkish customs, and therefore must have included quarter tones (Feldman 1996, 206-07). This discrepancy already figures in the 17-note scale of Ṣāfiyy al-Dīn from the 13th century. Contrary to the (false) claim by Şāfìyy al-Dīn himself, the fretting of his lute did not permit the performance of the

Figure 4. Segāh in Husayn̄̄ and Rāst.

characteristic "neutral" scale steps obtained from al-Farābı̄’s fundamental scale (d'Erlanger 2001-III, 116, Figure 73). Compared to each other, the lute systems of al-Farābi ($10^{\text {th }}$ century), Ibn Sīna ($11^{\text {th }}$ century), and Ṣāfīyy al-Dīn propose three different approaches to the intonation of "neutral" seconds and thirds, as seen in Table 1.

In his Šarafìyyah, Ṣāfìyy al-Dīn introduced two distinct divisions and names for the fret that he labeled as "W": First, he described it as "Zalzal" (8192/6561), then as "Persian" (72/59) medius (d'Erlanger 2001-III, 115). Table 73 on the subsequent page of d'Erlanger's edition (2001-III, 116) defines al-Farābı̄’s slightly higher ratio 27/22 (354.55ф́) again as the Zalzal medius. This pair of thirds rose upwards in the course of Ṣāfĩyy al-Dīn's complicated formulation, while his nomenclature created an important confusion in regard to the older treatises: Ṣāfǐyy al-Dīn's Persian medius wusṭā' al-furs, (wf) is practically identical with Ibn Sīna's and almost identical with al-Farāb̄̄’s Zalzal medius wusṭā' Zalzal (wZ). This noticeable

Table 1. Ṣāfĩyy al-Dīn's "neutral" scale steps in comparison with al-Farābī and Ibn Sīna.

change in denomination involves a considerable rise of the characteristic thirds $w f$ and $w Z$. Whether observed in practice or merely introduced as a theoretical artifice, this change emerged as the most significant controversy on tuning in the Middle Eastern tradition. For the first time in a written source, the note that today is known as segāh appeared only one Pythagorean comma below the Pythagorean major third (see Table 2).

Another question arises from the large integers in the fraction (8192/6561) that Ṣāfìyy alDīn's systematic approach postulates for $w Z$. If it has to be calculated, why should it not be formulated as the acoustically more convincing harmonic third $(5 / 4=386.31 \phi)$ that would differ by only a schisma (1.95ф)? According to a strictly Pythagorean calculation, this interval should correctly be labeled as C-flat (relative to G) or F-flat (relative to C), as shown in Figure 5.

Table 2. Comparison of $w f$ and $w Z$ in FA, IS, and ṢD.

	FA		IS		SD		
				7	"wZ"	$\frac{8192}{6561}$	384.36¢
$w \boldsymbol{Z}$	$\frac{27}{22}$	354.55¢	$\frac{39}{32}$	342.48¢	"wf"	$\frac{72}{59}$	344.74¢
$\boldsymbol{w f}$	$\frac{81}{68}$	302.86¢	$\frac{32}{27}$	294.13¢			

Figure 5. Ṣāfìyy al-Dīn's Pythagorean calculation of Segāh, based on G.

The modern Turkish systems of Raûf Yektâ (d'Erlanger 2001-V, 27) and Arel-EzgiUzdilek (Signell 2006, 41, 44-45; Özkan 2006, 38; 62), however, place it at the position of a third, as B minus a comma (relative to G) or E minus a comma (relative to C). Among the more widely discussed modern theorists, only Mustafa Ekrem Karadeniz (1985, 10-15) replaced this diminished fourth with the harmonic ratio 5/4.

THE 1932 CONGRESS OF CAIRO

To judge from Ottoman sources, the extension of the fundamental scale from 17 to 24 notes per octave must have been completed by the middle of the 19th century (Popescu-Judetz 2002, 169-71, Table I). The proposals that were presented at the Congress of Cairo in 1932 reflect the same disagreement observed among al-Farābī, Ibn Sīna, and Ṣāfĩyy al-Dīn. Most theorists - including Maurice Collengettes, the Syrian Mevlevī šeyh 'Alī al-Darwīš, the Lebanese Mihāā $\overline{1}$ l 'Ibn Ĝurĝus Mušāqah, and the Egyptians Manṣūr 'Awaḍ, 'Āmīn al-Dīk Affendī, 'Idrīs Rāġib Bey, and Iskandar Šalfūn-proposed fundamental scales containing "neutral" seconds and thirds, each of them advocating a different method of calculation.

Collengettes based his calculations on recordings of empirical studies. He devised a scale containing the harmonic quarter tone $12 / 11\left(150.64_{\S}\right)$ but missing both the minor whole tone 10/9 (182.40ф) and the harmonic third (d'Erlanger 2001-V, 23, Figure 7).

Darwǐš, who lived in Aleppo, offered an ultra-Pythagorean approach that seemed to attempt a bridge between Ottoman-Turkish and Arab intonation customs and in which he based all ratios on multiples of octaves and fifths. His system (d'Erlanger 2001-V, 29, Figure 9) results in impractically complex ratios: the "neutral" third (315657/256000 or 362.66d) considerably high compared to other Arab theories-was calculated by joining the major whole tone $(9 / 8,203.91 申)$ with the Pythagorean apotome $(2187 / 2048,113.68 \not \subset)$ and "half a leimma." For this purpose, Darwīš divided the leimma (256/243, 90.23ф) into two almost
equal parts: $4000 / 3897(45.16 \not \subset)$ and $3464 / 3375$ (45.06) . The first of these ratios is composed of the product of $\left(2^{5}\right) *\left(5^{3}\right)=4000$ and that of $\left(3^{2}\right) * 433=3897$; the second is composed of the product of $\left(2^{3}\right) * 433=3464$ and that of $\left(5^{3}\right) *\left(3^{3}\right)=3375$. In introducing prime numbers five and 433 into his system, Darwīs did not limit his interval ratios to multiples of two and three, and thus diverted from a principal standard of the Pythagorean tuning method. Furthermore, ratios of such complexity do not easily permit tuning on a monochord by means of geometrical construction and may involve cumulative errors. Weiss (2004) suggests that Darwiš could have omitted the complexity of these fractions by dividing the leimma into aliquot ${ }^{5}$ parts: $512 / 499$, i.e. 44.52ϕ and $499 / 486$, i.e. $45.70 \not \phi^{6}$

Mušāqah obtained interval sizes that closely resemble those of Collengettes as well as those of the ultimate proposal of the Congress (d'Erlanger 2001, 34, Figure 10; 48-50) by dividing a string's length into $3,456\left(=27^{*} 128=\left(3^{3}\right)^{*}\left(2^{7}\right)\right)$ equal parts. He did not provide ratios of the interval sizes in his system. D'Erlanger (2001-V, 32-33) represented his "neutral" second only according to Mušāqah's own method, at the $3,177^{\text {th }}$ node on an octave spanning over 1,728 divisions (which are half of 3,456). This interval, transformed into cents, amounts to 156.65ϕ, which is almost exactly six ϕ higher than the harmonic quarter-tone $11 / 10$, i.e. 150.64 ¢ . Weiss included an interval of approximately the same size ($128 / 117$, i.e. $155.56 \$$) in the tuning of his instrument Q9.
'Awaḍ's neutral third and sixth-40/33 (333.04¢) and 60/37 (836.92ф), respectively-are reminiscent of the aliquot division practices of Greek antiquity, but complicate the discussion by postulating intervals that diverge to an even greater extent from historical precedents and regional practices (d'Erlanger 2001-V, 37, Figure 11). His neutral second 40/37 (134.97\&)

[^3]constitutes the lowest neutral second of all systems from the Congress and is almost identical with Ibn Sīna's simpler ratio 13/12 (138.57 \downarrow). The most problematic choice of 'Awaḍ's scale lies in his decision to lower the basic whole tone steps from the major (203.91ф) to the minor whole tone $(182.4 \not \subset)$. For that reason his note būselik has the same ratio as Ṣāfìyy al-Dīn's and Raûf Yektâ's note segāh.

Rāḡib and Šalfūn measured their intervals in \varnothing values. Their intervals differ slightly from integer ratios, and probably reflect the practical context of their measurements quite well. Whereas Rāgib's "neutral" seconds and thirds seem to originate in the harmonic ratio 11/10 (165.0ф), Šalfūn departed from 12/11 (150.64¢) as a defining ratio for the three-quarter tone.

Collengettes' and 'Āmīn al-Dīk's systems (d'Erlanger 2001-V, 42, Figure 13) agree most closely with the general Arab scale from the conference, in using the harmonic quarter tone 12/11 (150.64ф¢) and al-Farābī's neutral third 27/22 (354.55ф). In lacking the minor whole tone and the harmonic third, they are, however, not relevant in modern Turkish practice. According to Weiss (2009-11), the Syrian school-represented by the legacy of 'Alī al-Darwīš-continues to define fundamental "neutral" interval sizes midway between the "quarter tone" intonation of the majority of Arab systems and the comma- and leimma-based Turkish theories. Furthermore, many "neutral" intervals tend to be tuned around 10ϕ higher in Aleppo in comparison to the tradition of Damascus (Weiss 2009-11), as seen in Figure 6. Table 3 illustrates how Raûf Yektâ's (RY) note dik pest hisâr (65536/59049, i.e. 180.45ф) and ‘Awaḍ’s low tuned 'Ušayrān (10/9, i.e. 182.40ф́) meet at approximately the same pitch.

Figure 6. Approximate range of quarter-tone pitches in Damascus and Aleppo.

Table 3. Substantial differences among three notes above Yekgāh in modern systems.

WESTERN STAFF NOTATION IN TURKEY

Raûf Yektâ (d’Erlanger 2001-V, 27, Figure 8) recreated the symmetry of Ṣāfìyy al-Dīn’s strictly Pythagorean approach in a tuning that is solely composed of leimma-s and comma-s. This system uses the same pitch inventory as the AEU system. Although theorists have normally described its intervals by means of Pythagorean ratios (Signell 2006, 41, 44-45; Özkan 2006, 38, 62; Ayangil 2008, 427), the octave division of its general scale resembles more truthfully that of 53 Holdrian comma-s ($5^{3} \sqrt{2}$, i.e. $22.64 \varnothing$) which close the open spiral of perfect fourths or fifths to a circle, as Figure 7 demonstrates.

The AEU system, in revising Raûf Yektâ's Western staff notation, adopts a similar approach in defining the note 'irāq by means of the Pythagorean ratio $8192 / 6561\left(2^{13} / 3^{8}\right.$, i.e. 384.36 \not) from above yekgāh. It is written as a third although, in a strictly Pythagorean context, it should normally be regarded as a diminished fourth. Raûf Yektâ (1921, Ayangil $2008,423)$ notated the note segāh-due to its status as a main note of the fundamental scale-without alteration signs. Arel-Ezgi-Uzdilek, in their closer adherence to Western staff notation, represented it with the reversed "koma bemolü" (Turkish) (Özkan 2006, 62), as shown in Figure 8.

In his approach, Weiss uses this symbol for indicating the syntonic comma (81/80, $21.51 \phi)$. He therefore defines his "Turkish segāh" explicitly as a harmonic third 5/4 that is
wider than Raûf Yektâ's and Arel-Ezgi-Uzdilek's Pythagorean interval by the distance of the schisma (1.95ф), as seen in Figure 9.

Figure 7. Derivation of Raûf Yektâ's 24-note System from powers of two and multiples of three.

Figure 8. AEU notation: Koma Bemolü.

Figure 9. Comparison of comma notation in RY, AEU, and Weiss.
RY
AEU
Weiss

NOTATIONAL CONVENTIONS

The dilemma of Raûf Yektâ's and Arel-Ezgi-Uzdilek's diminished fourth that is notated as a third shows that their pitch inventory is limited even in comparison with the Western tuning system to which they refer. Yalçın Tura pointed out this problem by indicating the number of alteration signs required by a potentially endless spiral of fifths. For Western pitch notation, he counted 20 different pitches on a column of perfect fifths from C-natural to B double -sharp and 16 on a column of perfect fourths from C-natural to F-double-flat, which makes a total of 35 different pitches (Tura 1988b, 128). Tura emphasized that the modern Turkish system was constrained to a framework of twelve pitches on a fifths spine from Cnatural to E-sharp and to 13 pitches within a fourth spine from C-natural to D-double-flat. This provides only the known 25 pitches (24 notes) per octave, although a Pythagorean tuning system would provide the potential for more.

AEU notation provides most pitches with two alternative ways of spelling: a note with a sharp sign is equal to the next diatonic step with a flat, apparently creating an analogy with Western enharmonic convention. This, however, conflicts with strictly Pythagorean calculation. Weiss's alteration signs, on the other hand, distinguish between pitches that in Western notation would be enharmonic equivalents.

In Pythagorean tuning, the difference between the G-sharp and the A-flat in Figure 10 would correspond to the Pythagorean comma that is correctly included in Weiss's mandal-s.

Figure 10. Minor and Major Semitone in Comparison: AEU vs. Weiss.

In the AEU system, the distances between G-natural and G-sharp and between G-natural and A-flat-chromatic and diatonic semitones-are the same.

This creates an analogy to the tempered piano in that it does not reflect the original meaning of the Western notational symbols. Since, in general, the modern Turkish system does not substantially differ from the Western pitch inventory, Tura emphatically denounced it as a "deficient copy of the Western system" ${ }^{7}$ (1988a, 130). Arel-Ezgi-Uzdilek, on the other hand, introduced a new alteration sign for raising a note by an apotome, namely, the triplesharp symbol (Figure 11). This would not have been necessary if Arel-Ezgi-Uzdilek had employed Western notation in its original Pythagorean framework rather than its tempered signification. In Weiss's mandal notation, the triple-sharp figures among the "quarter tone" accidentals and, thus, is employed for a different context.

As Figure 12 illustrates, the Pythagorean apotome existed on Ṣāfīyy al-Dīn's monochord only as a secondary interval between the Pythagorean minor and major thirds. In a 24 -note Systematist tuning such as that of Arel-Ezgi-Uzdilek, the apotome is employed as a major semitone relative to any pitch in the system. According to Signell's Stroboconn measurements of the basic interval steps of Turkish music, the apotome (küçük mücenneb) could vary within

Figure 11. The "triple-sharp" accidental in Arel-Ezgi-Uzdilek's and Weiss's notation.

[^4]Figure 12. The Pythagorean apotome in ṢD relative to D and G, respectively.

a range from 111 to 117ϕ, with an average of 112ϕ (Signell 2006, 145), which is very close to the size of the harmonic major semitone $16 / 15$ (111.73ф). In Weiss's mandal notation there are two distinct kinds of apotome-s: the harmonic interval $16 / 15$, produced as a minor second between two adjacent courses of strings, and the Pythagorean apotome (2187/2048) that-in contrast to Arel-Ezgi-Uzdilek-Weiss treats in accordance with its mathematical derivation as an augmented prime, produced on one single course of strings at a time.

HISTORICAL PERFORMANCE PRACTICE IN TURKEY

Since the 1970s, Turkish musicians have also used Arel-Ezgi-Uzdilek's fundamental scale for interpreting the older Ottoman repertoire. The majority of Turkish theorists in the $20^{\text {th }}$ century—Tura being the main exception-transcribed Prince Dimitrie Cantemir's $17^{\text {th }}$ century collection (Tura 2001) from later sources and in accordance with the pitch system of Arel-Ezgi-Uzdilek (Feldman 1996, 217-18). According to Eugenia Popescu-Judetz (1999, 66-67), a parallel tradition of Cantemir's compositions developed through oral transmission of pieces that often had not been included in the original compilation. Many of these works are constructed as four-part pešrew-s (transliteration from Ottoman Turkish), whereas composers of Cantemir's era still employed the older, tripartite form with one repeated ritornello (1999, 70), the müläzime. Contemporary collections of Turkish music represent these compositions in AEU notation (Popescu-Judetz 1999, Wright 1992).

According to Feldman (1996, 206-213), "neutral" fundamental main notes, such as the note $\operatorname{Seg} \bar{a} h$, were not realized at the ratio to which they would be assigned in AEU. Whereas Dimitrie Cantemir, on his $17^{\text {th }}$ century $\operatorname{ṭanb} \bar{u} r$, defined a single fret and a single name for this neutral third (Feldman 1996, 207), contemporary theories usually distinguish three notes in that area. Feldman observed that, in its number (17) and tuning of frets, the $17^{\text {th }}$ century's Ottoman tanbūr closely resembled the contemporary Iranian setar. He relied on During's recordings of Iranian dastgāhs where the modes šūr and homāyūn have approximately the same pitch in practice and sometimes are even tuned identically (Feldman 1996, 209-10, During 1985, 110-18). Between the notes būselik and kürdī, Cantemir specified only one fret and one note name-"segāh"-for an area that, on the contemporary Turkish tanb $\bar{u} r$, has four distinct pitches. A modern Turkish tanbūr, according to the frets on Necdet Yaşar's instrument (Signell 2006, 144-48), also disposes of a different pitch for the note 'uššāqwhich lowers from the adjacent unaltered note by approximately 2.5 comma-s.

In accordance with the previous discussion and Feldman's conclusions, Weiss's interpretation of a selection of compositions from Cantemir's Kitāb-u 'ilm-i l-Musīqū on the CD "Parfums Ottomans" sounds remarkably "Arab." For that reason, it received mixed reactions among Weiss's colleagues in Turkey (Weiss 2009-11, Ayangil 2011). Weiss tuned the "neutral" intervals by means of ratios handed down in the Arab tradition; in his maqām bayāt $\bar{\imath}$ the distance between the notes 'ašīr $\bar{a} n$ and 'irāq amounts to the ratio $12 / 11$ (150.64фф), and the interval dügāh-segāh corresponds to the ratio 13/12 (138.57ф) -Ibn Sīna's low tuning of the "neutral" second (Weiss 2006, 14). At a time when Q9 was not yet constructed, Q8 already offered a distinct mandal for each of these ratios. Admittedly, this approach exceeds the possibilities of a $17^{\text {th }}$ century's lute on which these pitches would have been played on the same fret, as shown in Figure 13.

Figure 13. Ottoman " $w Z$ " notes on Q8.

NECDET YAŞAR'S ṬANBŪR

The extended—and most probably, justly tuned—supply of pitches on Necdet Yaşar's țanbūr marks a decisive step towards Weiss's first instrument, Q1. Yaşar was born in 1930 in the town of Nizip in the district of Gaziantep (southeast Turkey), very close to Syria. Weiss believes that Yaşar's background also let him discover traits of the local tradition of Northern Syria and the city of Aleppo; however, Yaşar was most notably influenced by the legacy of Tanburî Cemil Bey in Istanbul, and it was Cemil's son, Mesut Cemil, who inspired him to learn the $\operatorname{tanb} \bar{u} r$ at the age of 20 . Weiss experimentally recreated the division of the fourth in Yaşar's fretting and adjusted it according to his own "hypothesis of acoustic coherence" (Weiss 2004). This "ultra-Pythagorean" fourth (Weiss ibid.) contains 14 pitches and, thus, constitutes the most sophisticated system developed so far for a fretted lute in the Middle East. It already resembles the respective mandal-s on Q1-8, and, for that reason, Weiss's alteration signs represent its interval sizes without major discrepancies. According to Weiss's experimental reconstruction, this scale contains Ibn Sīna's neutral second (note four) next to the note "uşşâk" (note five). The distance between the A-flat and the A-natural as well as between the A-natural and the A-sharp on an imaginary $q \bar{a} n \bar{u} n$ would result in the Pythagorean apotome (2187/2048), in the same manner as on Q1-8 and Q9, as shown in Figure 14. As such a $q \bar{a} n \bar{u} n$ would need six different positions between A-flat and A-natural, it would include eleven mandal-s per string (see Figure 15).

Figure 14. Division of the fourth on Necdet Yaşar's Tanbūrr (Weiss 2004).

Figure 15. Mandal-s per string on a hypothetical $Q \bar{a} n u \bar{u} n$ according to the frets on Necdet Yaşar's Tanbūr (Weiss 2004).

THE $Q \bar{A} N \bar{U} N$ OF ALEPPO

Yaşar's țanbūr scale could be compared to the division of the fourth obtained from the $q \bar{a} n \bar{u} n$ that was specifically built for the tuning practice of Aleppo. This instrument is closely related to the Aleppian qānūn player Šukrī Antaqlī, a contemporary of 'Alī al-Darwīš's son, Nadī al-Darwīš, who frequently performed with Sheyh Bakrī al-Kurdī during the 1950s (Weiss 2009-11). Antaqlī̀s $q \bar{a} n \bar{u} n$ was adopted and refined by other instrument-makers (such as 'Alī Wa'ez and Ṣāfīyy Zaynab) and eventually vanished in the 1980s (Weiss 2009-11). It provided eleven pitches on every course of strings. They were arrayed within the distance of two equal tempered semitones. The inner mandal positions were tuned by ear according to specific interval sizes. Weiss (2004, 2009-11) explains that this instrument, due to its tuning by means of "unequal Pythagorean temperament," marks the most rational of all mandal systems current at the time because it was based on a systematic division of the semitone. The first string of a theoretical lute with frets arranged according to the same tuning would result
in the approximate division of the fourth represented in Figures 16 and 17 (Weiss 2004). As on the tempered Arab $q \bar{a} n \bar{u} n$, the division of the fourth would vary depending on whether performers tuned the instrument in relation to C or $\mathrm{B}-\mathrm{flat}$.

STRUCTURE AND INVENTORY OF PITCHES ON WEISS'S QĀNŪN MODELS

Together with Q1-8, Weiss invented a specific notation system, influenced by a set of Arab, Turkish, and Iranian alteration signs, as seen in Figure 18. Each course of strings spans over twice the Pythagorean apotome (2187/2048, 113.69) .

Figure 16. Frets derived from the $Q \bar{a} n \bar{u} n$ of Aleppo, based on 'aĝam in C.

Figure 17. Frets derived from the $Q \bar{a} n \bar{u} n$ of Aleppo, based on 'âgam in B-Flat.

Figure 18. Weiss's alteration signs and Mandal positions.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
b	b	b	$户$	b	d	d	b	q	b	$>$	\vdots	\ddagger	$\#$	$\#$

Each flank comprises the same symmetrical set of micro-intervals. For that reason, Weiss named this prototype "modèle super-symmétrique" (2009-11). While retaining the accidentals of Western notation at the extremities of each set of mandal-s, Weiss distinguishes three central "quarter tones" within each apotome. On Q1-8, the lower one of these intervals is assigned to Ibn Sīna's neutral second 13/12 (138.57ф) and signified by the Persian koran accidental (Figure 19) on the apotome between "flat" and "natural" and, respectively, by the Persian sori (Figure 20) between "natural" and "sharp." These accidentals, in Iran, originally signified an alteration by a low "quarter tone" of varying size (During 1985, 81-82; Wright 2000b, 18, 2005, 225-26).

On Q8, the next higher "quarter tones" refer to the harmonic ratio 12/11 (150.64ф) and are represented by the struck out flat accidental (Figure 21) that is normally used in Arab contexts for the same interval size (Shiloah 1981, Touma 2003). Between "natural" and "sharp," Weiss

Figure 19. Moron

Figure 20. Sori

\ngtr

Figure 21. "Struck out" flat accidental.
b

Figure 22. "Half" sharp accidental.
$\$$

Figure 23. Raised "Arab" quarter-tone.

t

Figure 24. "Half" sharp with three lines.
$\#$

Figure 25. Reversed flat accidental.
d
uses a "half" sharp sign (Figure 22), as it appears in Western quarter tone music. On Q1-8, the next higher "quarter tone" is related to the ratio $11 / 10$ (165.00ф) and notated with a reversed struck out flat symbol on the apotome between "flat" and "natural" (Figure 23). On the second apotome, Weiss uses a half-triple-sharp, as it is known in AEU notation, yet with a different meaning (Figure 24). The mandal-s next to the extremities of each set are assigned to the alteration by a syntonic comma (81/80, 21.51c). Weiss's reversed flat accidental, shown in Figure 25, bears practically the same signification as it obtains in AEU notation (Özkan 2006, 62).

Weiss compiled the other accidentals of this group from modern Arab approaches, most notably from the notation practice of Tawfīq al-Sabbāg (1950, as referenced in Racy 2003, 107). The bemol wa-rub ' ("flat and a quarter") of this Syrian theorist, shown in Figure 26, is denoted by the lowering of a note by "three quarters" of a flat (= three-eighths of a tone). In Weiss's system, the added stem denotes the distance of a syntonic comma (21.51申), and he

Figure 26. Bemol wa-Rub :

b

Figure 27. Natural position plus syntonic comma.
q

Figure 28. Sharp position minus syntonic comma.

\#

Figure 29. Symbols following "comma accidentals."

B E

extended the same concept to other common alteration signs, shown in Figures 27 and 28. For the remaining two positions, Weiss devised symbols with yet another stem that follows those with one stem, as shown in Figure 29.

Q8 and Q9 both include an additional octave in the bass register and, thus, contain 33 courses of strings. Thus, the total amount of 99 strings (instead of the 78 on 26 courses of Turkish $q \bar{a} n \bar{u} n-s$) encompasses four octaves and a fifth, spanning from C2 to G6. Even if the lowest octave may not be used very often, as on the pedal harp, it provides the lower registers with supplementary overtones and, thus, more resonance.

As on common Turkish instruments, Weiss tunes A4-which equals the note Nawā/Nevâ in Middle Eastern notation - to 440 Hertz. As all courses on Q1-9 are tuned in just intonation according to A, C is tuned by six \notin lower than in absolute Western pitch, at the distance of $27 / 16$, ie. 905.87 c to A , as seen in Figure 30.

Figure 30. Pythagorean heptatonic scale on Q1-9.

Both Q1-8 and Q9 have 14 mandal-s for every course of strings. This results in 15 different pitches per course of strings. For practical reasons, though, a portion of mandal-s on some courses remains fixed in every octave. Thus, as seen in Figure 31, Weiss omitted positions 8 to 10 for courses $\mathrm{D}, \mathrm{E}, \mathrm{G}, \mathrm{A}$, and B because he considered them dispensable in order to gain more flexibility during quick modulations.

Weiss reduced the distribution of mandal-s further in the upper octave and left out the ratios represented by accidentals with two additional stems. However, he tuned all remaining positions in exactly the same fashion as in the lower octaves. The two highest string-courses in the upper octave (F6 \& G6) only span one apotome. They can be tuned depending upon context so that they either produce pitches between "flat" and "natural" or between "natural" and sharp." The highest course of strings (G6) only has four mandal-s. Weiss conceived this distribution by systematically ruling out the least common transpositions of Middle Eastern performance practice. Additionally, as shown in Figure 32, the courses of F4 and F5 contain a

Figure 31. Mandal distribution on the seven courses of strings per octave.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
b	b	b	\vee	\downarrow	\searrow	\downarrow	4	b	b	$>$	\vdots	\ddagger	\nexists	$\#$
$\sqrt{ }$														
$\sqrt{ }$	-	fixed	$-\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$								

Figure 32. $H i \hat{g} \bar{a} z$ on D-sharp.

double-sharp pitch that proves to be useful in a number of transpositions, as in a rare genre $h i \hat{g} \bar{a} z$ on D-sharp.

Both on Q8 and Q9, each Pythagorean apotome $(2187 / 2048=113.69 \not \subset)$ is divided into two framing syntonic comma-s 81/80 (21.51ф) with the "Zarlino semitone" 25/24 (70.67ф) at their center. In this manner, 113.69ϕ are divided into $21.51 \phi+70.67 \phi+21.51 \phi$. The ratio 135/128 (92.18¢) is beautifully embedded in symmetrical interconnection, as illustrated in Figure 33.

The only differences between Q8 and Q9 involve the interior mandal-s that are encompassed by the "Zarlino semitones." Q9 was not intended to be an improvement, but a

Figure 33. Q8 and Q9: basic division of the Pythagorean apotome.

variant of Q8, more suitable for the performance of specifically Turkish-Ottoman music, whereas Weiss has used Q8 preferably in Arabian contexts. On Q8, each apotome is divided into seven micro steps of $21.51,14.2,12.65,12.06,14.37,17.4$, and 21.51ϕ, as shown in Table 4.

A clearer understanding of Weiss's decisions is obtained by an observation of these divisions among the ratios that result on the D strings relative to C -natural. On Q8 and Q9, Dflat is related to C-natural by the Pythagorean leimma $256 / 243=90.23$ ф. E, G, A, and B-flat are related in the same way with regard to D, F, G, and A-natural, and F and C-natural in regard to E and B-natural. On Q1-8, the repertory of seconds between D-flat and D-natural describes an almost perfect series of harmonic ratios from 16/15 (mandal 1) to 9/8 (mandal 7) in which only the ratios $15 / 14$ and $14 / 13$ are missing (see Table 5).

On Q9, Weiss divided each apotome into seven micro steps of $21.51,16.57,15.20,12.06$, 12.35, 14.49, and 21.51申 (see Table 6). The inner mandal positions appear, therefore, in

Table 4. Distribution of micro steps per string on Q1-8 from one position to another.

Table 5. Ratios on the D string relative to C -natural on $\mathrm{Q} 1-8$.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	b	b	b	p	b	寸	d	4	q	b	>	;	\%	\#	\#
ϕ	$\leftrightarrow 21.51 \leftrightarrow 14.19 \leftrightarrow 12.65 \leftrightarrow 12.06 \leftrightarrow 14.37 \leftrightarrow 17.40 \leftrightarrow 21.51 \leftrightarrow 21.51 \leftrightarrow 14.19 \leftrightarrow 12.65 \leftrightarrow 12.06 \leftrightarrow 14.37 \leftrightarrow 17.40 \leftrightarrow 21.51 \leftrightarrow$														
ratios	256	16	784	$\underline{13}$	$\underline{12}$	11	$\underline{10}$	$\underline{9}$	729	147	9477	6561	24057	1215	19683
	243	15	729	12	11	10	9	8	640	128	8192	5632	20480	1024	16384
¢	90.23	111.73	125.92	138.57	150.64	165.00	182.40	203.91	225.42	239.61	252.26	264.32	278.69	296.09	317.60

Table 6．Distribution of micro steps per string on Q9 from one position to another．

	0			2		3		4	5		6	7		8	9	） 10	10	11	12				
	b		，	b		P		万	J		d			a		，	＞	\＃	\％		\＃		\＃
	$\stackrel{\square}{4}$																						
ratios	$\left\llcorner_{81} \square_{105}{ }^{\text {¢ }} 572\right.$					\perp_{144}		$\perp \underline{1547}$		$\perp \frac{120}{119}{ }^{\perp}$		$-\frac{81}{80} \Perp \frac{81}{80}$				$\perp_{572}{ }^{\perp} \underline{144}$			$\perp \underline{1547}$	$\perp \underline{120}$			
¢		1.51	16.57		15.20		2.06		12.35		14.49	21.51	21.51		16.57	15.20	12.06		12.35	14.4		21.	

Table 7．Ratios on the D string in regard to C－natural on Q9．

	0	1	2	3	4	5	6	7	8	8	9	10	11	12	13	14
	b	b	者	p	b	才	d	¢		\＆	！	＞	；	\＃	\＃	\＃
¢	$\leftrightarrow 21.51 \leftrightarrow 16.57 \leftrightarrow 15.20 \leftrightarrow 12.06 \leftrightarrow 12.35 \leftrightarrow 14.49 \leftrightarrow 21.51 \leftrightarrow 21.51 \leftrightarrow 16.57 \leftrightarrow 15.20 \leftrightarrow 12.06 \leftrightarrow 12.35 \leftrightarrow 14.49 \leftrightarrow 21.51 \leftrightarrow$															
ratios	256	$\underline{16}$	$\underline{14}$	88	128	119	10	9		29	$\underline{23}$	297	$\underline{243}$	$\underline{273}$	$\underline{1215}$	19683
	243	15	13	81	117	108	9	8		640	20	256	208	232	1024	16384

slightly higher tuning（Table 7）．The analysis of interval sizes on Q1－8 and Q9 in descending manner，as shown in Figure 34，reveals that the order of ratios observed on Q8 in ascending manner reappears，simply in reversed direction，on Q9．

The tuning frame of a Pythagorean diatonic scale applies to all mandal positions on Q1－9． The distance between a flat position in the first apotome and its sharpened counterpart in the second apotome（for example，position one in regard to eight，four in regard to 11）is uniformly 113.69 ¢．For that reason，Q8 and Q9 are not suitable to perform together with tempered instruments．Weiss tuned the highest mandal on every course to a pitch higher than the lowest mandal of the next higher string．Between the major seconds（C－D，D－E，F－G，G－A， A－B），this difference amounts to 23.46 －－the Pythagorean comma．

Weiss is able to realize exactly the distance of the schisma $(32,805 / 32,768$ ，i．e． $1.95 \phi)$ ．On string courses D，E，G，A，and B，position zero is by a schisma lower than position 13 of the

Figure 34. Descending seconds between F and E-flat on Q8 and Q9.

Figure 35. Schisma on Q1-8 and Q9 (C-13 and D-0) in cents.

next lower course of strings (Figure 35). On courses C and F, position seven must be chosen to provide the same interval relative to the next lower course.

As shown in Figure 36, Weiss is able to play perfect fifths of different sizes: either a very close approximation to the tempered perfect fifth, namely, 700.0013ф, a just (3/2, 701.96ф), and a slightly widened fifth (703.91申) by using various combinations of mandal-s. In return, the lowest positions on F and C are also $23.46 \not$ lower than the sevenths positions on course E or, respectively, B. F-flat and F-natural-at 384.36 and 498.05 \& - are lower than E-natural and E-sharp, and thus in accordance with exact Pythagorean deduction (see Figure 37).

Figure 36. Three different perfect fifths.

Figure 37. Flats and sharps on E and F strings in cents.

Tables 8 and 9 offer a complete view of the ratios relative to C -natural on both instruments. The abundance of choices for seconds and thirds reveals in how many different tuning contexts Weiss is able to perform while maintaining intervals at exactly defined ratios. This system permits Weiss to select from all principal interval ratios that appear in the theoretical tradition as well as in different local contexts. Furthermore, he is able to maintain the same ratios in all major transpositions and in a wide range of modulations. In this manner, his instruments have accomplished the challenging task of allowing complex modulations without undesired pitch shifts, while keeping just ratios.

Figure 38 offers a full view of Weiss's ninth prototype (Q9). Figure 39 displays the distribution of mandal-s in the middle register from close distance.

Table 8．Q1－8：available pitch content per octave in relationship to C－natural．

DO	$\begin{aligned} & \frac{2048}{2187} \\ & 113.69 \mathrm{~g} \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{128}{135} \\ 92.18 غ \end{array}$	$\begin{aligned} & \frac{2560}{2673} \\ & 74.788 \end{aligned}$	$\frac{704}{729}$ 60.41 E	$\begin{aligned} & \frac{1053}{1024} \\ & 48.35 \phi \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{48}{49} \\ 35.70 \phi \end{array}$	$\begin{aligned} & \frac{80}{81} \\ & 21.51 \phi \end{aligned}$	$\frac{1}{1}$ 0	$\begin{array}{\|l} \frac{81}{80} \\ 21.51 \mathrm{k} \end{array}$	$\begin{aligned} & \frac{49}{48} \\ & 35.70 \mathrm{c} \end{aligned}$	$\begin{aligned} & \frac{1053}{1024} \\ & 48.35 ¢ \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{729}{704} \\ 60.41 \mathrm{~g} \end{array}$	$\begin{aligned} & \frac{2673}{2560} \\ & 74.78 \dot{y} \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{135}{128} \\ 92.18 \phi \end{array}$	$\frac{2187}{2048}$ 113.69 c
$b \text { b b }$											$\ngtr$$\$$		中 责		H
RE	$\begin{aligned} & \frac{256}{243} \\ & 90.22 \phi \end{aligned}$	$\begin{aligned} & \frac{16}{15} \\ & 111.73 \dot{1} \end{aligned}$	$\begin{array}{\|l} \frac{784}{729} \\ 125.92 \& \end{array}$	$\begin{aligned} & \frac{13}{12} \\ & 138.57 d \end{aligned}$	$\frac{12}{11}$ $150.63 \&$	$\frac{11}{10}$ 165．00	$\frac{10}{9}$ 182.40ϕ	$\frac{9}{8}$ 203.914	$\begin{array}{\|l} \frac{729}{640} \\ 225.41 \$ \end{array}$	$\frac{147}{128}$ $239.60 \not \subset$	$\begin{aligned} & \frac{9477}{8192} \\ & 252.26 \mathrm{k} \end{aligned}$	$\begin{aligned} & \frac{6561}{5632} \\ & 264.32 \mathrm{l} \end{aligned}$	$\begin{aligned} & \frac{24057}{20480} \\ & 278.68 \phi \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{1215}{1024} \\ & 296.09 \end{aligned}$	$\begin{aligned} & \frac{19683}{16367} \\ & 319.398 \end{aligned}$
MI	$\begin{aligned} & \frac{32}{27} \\ & 294.14 \dot{1} \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{6}{5} \\ 315.64 \varnothing \end{array}$	$\frac{98}{81}$ 329.83ϕ	$\begin{aligned} & \frac{39}{32} \\ & 342.48 غ \end{aligned}$	$\begin{aligned} & \frac{27}{22} \\ & 354.55 \phi \end{aligned}$	$\frac{99}{80}$ 368.91 ¢	$\begin{aligned} & \frac{5}{4} \\ & 386.31 ф \end{aligned}$	$\frac{81}{64}$ 407．82¢	$\begin{array}{\|l\|l} \frac{6561}{5120} \\ 429.32 \phi \end{array}$	$\frac{1323}{1024}$ 443.52ϕ	$\frac{85293}{65536}$ 456．17\％	$\begin{aligned} & \frac{59049}{45056} \\ & 468.23 \dot{6} \end{aligned}$	$\begin{aligned} & \frac{216513}{163840} \\ & 482.59 ¢ \end{aligned}$	$\begin{aligned} & \frac{10935}{8192} \\ & 500.00 \phi \end{aligned}$	$\begin{aligned} & \frac{177147}{131072} \\ & 521.51 ¢ \\ & \hline \end{aligned}$
FA	$\begin{aligned} & \frac{8192}{6561} \\ & 384.36 \phi \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{512}{405} \\ 405.87 \phi \end{array}$	$\begin{aligned} & \frac{25088}{19683} \\ & 420.06 \$ \end{aligned}$	$\frac{104}{81}$ 432.71	$\frac{128}{99}$ 444．77¢	$\begin{array}{\|l\|} \hline \frac{176}{135} \\ 459.13 \phi \end{array}$	$\frac{320}{243}$ 476.54ε	$\frac{4}{3}$ 498．05¢	$\begin{aligned} & \frac{27}{20} \\ & 519.55 \phi \end{aligned}$	$\begin{aligned} & \frac{49}{36} \\ & 533.74 ¢ \end{aligned}$	$\frac{351}{256}$ 546．39¢	$\begin{array}{\|l\|} \hline \frac{243}{176} \\ 558.466 \end{array}$	$\begin{aligned} & \frac{891}{640} \\ & 572.82 \phi \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{45}{32} \\ 590.22 \phi \end{array}$	$\begin{array}{\|l\|} \hline \frac{729}{512} \\ 611.736 \end{array}$
SOL	$\begin{aligned} & \frac{1024}{729} \\ & 588.27 \phi \end{aligned}$	$\begin{array}{\|l\|} \frac{64}{45} \\ 609.78 \phi \end{array}$	$\begin{aligned} & \frac{3136}{2187} \\ & 623.97 \end{aligned}$	$\frac{13}{9}$ 636.62ϕ	$\frac{48}{36}$ 648．99¢	$\frac{22}{15}$ $663.05 ¢$	$\frac{40}{27}$ 680．45¢	$\begin{array}{\|l\|} \hline \frac{3}{2} \\ 701.96 \phi \end{array}$	$\begin{aligned} & \frac{243}{160} \\ & 723.466 \end{aligned}$	$\begin{aligned} & \frac{147}{96} \\ & 737.65 \phi \end{aligned}$	$\begin{aligned} & \frac{3159}{2048} \\ & 750.308 \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{2187}{1408} \\ 762.37 \mathrm{k} \end{array}$	$\begin{aligned} & \frac{8019}{5120} \\ & 776.73 \dot{6} \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{405}{256} \\ 794.13 \phi \end{array}$	$\begin{aligned} & \frac{6561}{4096} \\ & 815.64 \dot{1} \end{aligned}$
LA	$\frac{128}{81}$ 792．18¢	$\begin{array}{\|l} \frac{8}{5} \\ 813.69 ؛ \end{array}$	$\begin{aligned} & \frac{392}{243} \\ & 827.88 \& \end{aligned}$	$\frac{13}{8}$ 840.52 \＆	$\begin{aligned} & \frac{18}{11} \\ & 852.59 ¢ \end{aligned}$	$\frac{33}{20}$ 866.96 d	$\frac{5}{3}$	$\begin{aligned} & \frac{27}{16} \\ & 905.87 \phi \end{aligned}$	$\begin{aligned} & \frac{2187}{1280} \\ & 927.37 \phi \end{aligned}$	$\frac{441}{256}$ 941.568	$\begin{aligned} & \frac{28431}{16384} \\ & 954.21 \phi \end{aligned}$	$\begin{aligned} & \frac{19683}{11284} \\ & 963.21 ¢ \end{aligned}$	$\begin{aligned} & \frac{72171}{40960} \\ & 980.64 \dot{~} \end{aligned}$	$\begin{aligned} & \frac{3645}{2048} \\ & 998.04 \phi \end{aligned}$	$\frac{59049}{32768}$ 1019．55
SI	$\frac{16}{9}$ 996．09¢	$\begin{array}{\|l} \frac{9}{5} \\ 1017.6 \phi \end{array}$	$\frac{49}{27}$ $1031.79 \text { ¢ }$	$\frac{117}{64}$ 1044．44¢	$\frac{81}{44}$ 1056.5ϕ	$\frac{297}{160}$ 1070．87	$\frac{15}{8}$ 1088．27 d	$\begin{array}{\|l} \frac{243}{128} \\ 1109.78 ¢ \end{array}$	$\begin{aligned} & \frac{19683}{10240} \\ & 1131.288 \end{aligned}$	$\frac{3969}{2048}$ 1145.47 c	$\begin{aligned} & \frac{255879}{131079} \\ & 1158.03 \phi \end{aligned}$	$\begin{aligned} & \frac{177147}{90112} \\ & 1170.19 \dot{ } \end{aligned}$	$\begin{aligned} & \frac{649539}{327680} \\ & 1184.55 \phi \end{aligned}$	$\begin{array}{\|l} \frac{32805}{16384} \\ 1201.95 d \end{array}$	$\begin{aligned} & \frac{531441}{262144} \\ & 1223.466 \end{aligned}$
DO	$\frac{4096}{2187}$ 1086.31 c	$\begin{aligned} & \frac{256}{135} \\ & 1107.828 \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{5120}{2673} \\ 1122.018 \end{array}$	$\frac{52}{27}$ 1134.666	$\begin{aligned} & \frac{64}{33} \\ & 1146.73 \mathrm{c} \end{aligned}$	$\frac{88}{45}$ 1161.09 c	$\frac{160}{81}$ $1178.49 \mathrm{~d}$	$\begin{array}{\|l\|} \hline \frac{2}{1} \\ 1200.00 \dot{ } \end{array}$	$\frac{81}{40}$ 1221.51 c	$\begin{aligned} & \frac{49}{24} \\ & 1235.70 \dot{ } \end{aligned}$	$\begin{aligned} & \frac{1053}{512} \\ & 1248.356 \end{aligned}$	$\frac{729}{352}$ 1260．41غ	$\frac{2673}{1280}$ 1274．78¢	$\frac{135}{64}$ 1292.18ϕ	$\begin{array}{\|l\|l\|} \hline \frac{2187}{1024} \\ \hline \end{array}$ 1313.696

Table 9．Q9：available pitch content per octave in relationship to C－natural．

DO	$\begin{array}{\|l} \frac{2048}{2187} \\ 113.694 \end{array}$	$\begin{aligned} & \frac{128}{135} \\ & 92.18 ¢ \end{aligned}$	$\begin{array}{l\|l} \frac{232}{243} \\ 80.20 ¢ \end{array}$	$\begin{array}{\|l\|} \hline \frac{26}{27} \\ 65.34 \phi \end{array}$	$\begin{aligned} & \frac{32}{33} \\ & 53.27 \mathrm{k} \end{aligned}$	$\begin{aligned} & \frac{1664}{1701} \\ & 38.074 \end{aligned}$	$\begin{array}{\|l\|} \frac{80}{81} \\ 21.51 \phi \end{array}$	$\begin{aligned} & \frac{1}{1} \\ & 0 \end{aligned}$	$\begin{array}{\|l} \frac{81}{80} \\ 21.51 \mathrm{k} \end{array}$	$\begin{aligned} & \frac{1701}{1664} \\ & 38.07 \mathrm{l} \end{aligned}$	$\begin{aligned} & \frac{33}{32} \\ & 53.27 \mathrm{t} \end{aligned}$	$\begin{aligned} & \frac{27}{26} \\ & 65.344 \end{aligned}$	$\begin{aligned} & \frac{243}{232} \\ & 80.20 ¢ \end{aligned}$	$\begin{aligned} & \frac{135}{128} \\ & 92.18 \phi \end{aligned}$	$\begin{aligned} & \frac{2187}{2048} \\ & 113.69 \mathrm{k} \end{aligned}$
			7	P		犬	0	θ	E	E		\downarrow	中	H	＋
RE	$\begin{array}{\|l} \frac{256}{243} \\ 90.22 ¢ \end{array}$	$\begin{aligned} & \frac{16}{15} \\ & 111.73 \dot{1} \end{aligned}$	$\frac{14}{13}$ 128.29 k	$\frac{88}{81}$ $143.49 ¢$	$\frac{128}{117}$ 155.568	$\begin{array}{\|l} \frac{119}{108} \\ 167.92 \dot{1} \end{array}$	$\begin{array}{\|l} \frac{10}{9} \\ 182.40 \phi \end{array}$	$\frac{9}{8}$ 203.91 C	$\begin{array}{\|l} \frac{729}{640} \\ 225.41 \phi \end{array}$	$\begin{aligned} & \frac{15309}{13312} \\ & 241.98 \phi \end{aligned}$	$\begin{aligned} & \frac{297}{256} \\ & 257.186 \end{aligned}$	$\frac{243}{208}$ 269．25	$\begin{aligned} & \frac{9639}{8192} \\ & 281.60 \mathrm{~d} \end{aligned}$	$\begin{aligned} & \frac{1215}{1024} \\ & 296.09 \mathrm{~g} \end{aligned}$	$\begin{aligned} & \frac{19683}{16367} \\ & 319.39 \$ \end{aligned}$
MI	$\begin{array}{\|l} \frac{32}{27} \\ 294.14 \phi \end{array}$	$\begin{array}{\|l} \frac{6}{5} \\ 315.64 \dot{4} \end{array}$	$\begin{array}{\|l} \frac{63}{52} \\ 332.21 \notin \end{array}$	$\frac{11}{9}$ 347.41 d	$\begin{aligned} & \frac{16}{13} \\ & 359.47 d \end{aligned}$	$\begin{array}{\|l} \frac{119}{96} \\ 371.83 \dot{1} \end{array}$	$\frac{5}{4}$	$\begin{aligned} & \frac{81}{64} \\ & 407.82 \dot{1} \end{aligned}$	$\begin{array}{\|l\|l} \frac{6561}{5120} \\ 429.32 \phi \end{array}$	$\begin{aligned} & \frac{137781}{106496} \\ & 445.89 \dot{6} \end{aligned}$	$\begin{aligned} & \frac{2673}{2048} \\ & 461.09 \mathrm{c} \end{aligned}$	$\begin{aligned} & \frac{2187}{1664} \\ & 473.166 \end{aligned}$	$\begin{aligned} & \frac{86751}{65536} \\ & 485.51 \text { d } \end{aligned}$	$\begin{aligned} & \frac{10935}{8192} \\ & 500.00 \mathrm{~g} \end{aligned}$	$\begin{aligned} & \frac{177147}{131072} \\ & 521.51 ¢ \end{aligned}$
FA	$\begin{array}{\|l\|l\|} \frac{8192}{6561} \\ 384.36 \phi \end{array}$	$\begin{array}{\|l\|} \hline \frac{512}{405} \\ 405.87 ¢ \end{array}$	$\begin{array}{\|l\|} \frac{448}{351} \\ 422.43 ¢ \end{array}$	$\begin{array}{\|l\|} \frac{2816}{2187} \\ 437.63 \phi \end{array}$	$\begin{array}{\|l\|} \frac{4096}{3159} \\ 449976 \end{array}$	$\begin{array}{\|l\|} \hline \frac{952}{729} \\ 462.05 ¢ \end{array}$	$\begin{array}{\|l} \frac{320}{243} \\ 476.54 ¢ \end{array}$	$\begin{aligned} & \frac{4}{3} \\ & 498.05 \phi \end{aligned}$	$\begin{array}{\|l} \frac{27}{20} \\ 519.55 \phi \end{array}$	$\begin{aligned} & \frac{567}{416} \\ & 536.12 \dot{1} \end{aligned}$	$\frac{11}{8}$ 551.32 c	$\begin{array}{\|l} \frac{18}{13} \\ 563.38 \phi \end{array}$	$\begin{aligned} & \frac{357}{256} \\ & 575.74 \dot{6} \end{aligned}$	$\begin{array}{\|l} \frac{45}{32} \\ 590.22 \dot{6} \end{array}$	$\frac{729}{512}$ 611．73¢
SOL	$\begin{aligned} & \frac{1024}{729} \\ & 588.27 \phi \end{aligned}$	$\frac{64}{45}$ 609.78 \＆	$\frac{56}{39}$ 626.348	$\frac{352}{243}$ 641.54 p	$\frac{512}{351}$ 653.618	$\begin{array}{\|l} \frac{119}{81} \\ 665.96 \dot{~} \end{array}$	$\frac{40}{27}$ 680.45ϕ	$\begin{aligned} & \frac{3}{2} \\ & 701.966 \end{aligned}$	$\frac{243}{160}$ 723.466	$\begin{aligned} & \frac{5103}{3328} \\ & 740.03 \dot{1} \end{aligned}$	$\begin{array}{\|l} \frac{99}{64} \\ 755.23 \dot{6} \end{array}$	$\begin{aligned} & \frac{2187}{1404} \\ & 767.29 \phi \end{aligned}$	$\begin{aligned} & \frac{3213}{2048} \\ & 779.65 \mathrm{~d} \end{aligned}$	$\frac{405}{256}$ 794.13 c	$\frac{6561}{4096}$ 815.64 k
LA	$\begin{array}{\|l} \frac{128}{81} \\ 792.18 \phi \end{array}$	$\begin{array}{\|l} \frac{8}{5} \\ 813.69 ¢ \end{array}$	$\begin{array}{\|l} \frac{21}{13} \\ 830.25 ¢ \end{array}$	$\frac{44}{27}$ 845.45 \＆	$\begin{array}{\|l\|} \hline \frac{64}{39} \\ 857.52 \phi \end{array}$	$\begin{array}{\|l} \frac{119}{72} \\ 869.87 ¢ \end{array}$	$\frac{5}{3}$ 884.36ϕ	$\begin{aligned} & \frac{27}{16} \\ & 905.87 \mathrm{k} \end{aligned}$	$\begin{aligned} & \frac{2187}{1280} \\ & 927.37 \phi \end{aligned}$	$\begin{aligned} & \frac{45927}{26624} \\ & 943.94 \dot{~} \end{aligned}$	$\begin{aligned} & \frac{891}{512} \\ & 959.144 \mathrm{~d} \end{aligned}$	$\begin{aligned} & \frac{19683}{11232} \\ & 971.20 \phi \end{aligned}$	$\begin{aligned} & \frac{28917}{16384} \\ & 983.56 k \end{aligned}$	$\frac{3645}{2048}$ 998．04e	$\begin{aligned} & \frac{59049}{32768} \\ & 1019.55 \phi \end{aligned}$
SI	$\frac{16}{9}$ $996.09 ф$	$\begin{aligned} & \frac{9}{5} \\ & 1017.68 \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{189}{104} \\ 1034.164 \end{array}$	$\frac{11}{6}$ 1049.368	$\frac{24}{13}$ 106143k	$\begin{array}{\|l\|} \hline \frac{119}{64} \\ 1073.78 ¢ \end{array}$	$\frac{15}{8}$ 1088.27 ¢	$\begin{aligned} & \frac{243}{128} \\ & 1109.78 \& \end{aligned}$	$\begin{array}{\|l\|} \frac{19683}{10240} \\ 1131.28 \& \end{array}$	$\begin{aligned} & \frac{413343}{212992} \\ & 1147.85 ¢ \end{aligned}$	$\begin{aligned} & \frac{8019}{4096} \\ & 1163.05 \mathrm{f} \end{aligned}$	$\begin{aligned} & \frac{6561}{3328} \\ & 1175.11 \mathrm{q} \end{aligned}$	$\begin{aligned} & \frac{260253}{131072} \\ & 1187.46 \mathrm{~d} \end{aligned}$	$\begin{aligned} & \frac{32805}{16384} \\ & 1201.956 \end{aligned}$	$\begin{aligned} & \frac{531441}{262144} \\ & 1223.46 ¢ \end{aligned}$
DO	$\frac{4096}{2187}$ 1086.31 e	$\begin{aligned} & \frac{256}{135} \\ & 1107.82 \dot{1} \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{672}{351} \\ 1124.39 ¢ \end{array}$	$\begin{array}{\|l\|} \hline \frac{4224}{2187} \\ 1139.59 \mathrm{c} \end{array}$	$\begin{aligned} & \frac{12288}{6318} \\ & 151.65 \mathrm{f} \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{476}{243} \\ 1164.01 \dot{1} \end{array}$	$\begin{array}{\|l\|} \hline \frac{160}{81} \\ 1178.49 \dot{~} \end{array}$	$\begin{aligned} & \frac{2}{1} \\ & 1200.00 \phi \end{aligned}$	$\frac{81}{40}$ 1221.51 e	$\begin{aligned} & \frac{1701}{832} \\ & 1238.076 \end{aligned}$	$\frac{33}{16}$ 1253．27e	$\begin{array}{\|l\|} \hline \frac{27}{13} \\ 1265.34 \text { é } \end{array}$	$\frac{243}{116}$ 1280.20 ¢	$\frac{135}{64}$ 1292．18\＆	$\begin{aligned} & \frac{2187}{1024} \\ & 1313.694 \end{aligned}$

Figure 38. Weiss's prototype Q9, full view.

The abundance of justly tuned intervals observed in Tables 8 and 9 allows one to assume that Weiss may also develop his collaboration with contemporary Western composers on a more regular basis. So far, he has been involved in the creation of two Western scores: Klaus Huber's "Die Erde dreht sich auf den Hörnern eines Ochsen" (1996), premiered in 1994 at Wittener Tage für neue Kammermusik (Nyfeller 2003), and Christopher Trapani's "Disorientation" for the cursus in electroacoustic composition at IRCAM (Trapani 2010).

Figure 39. Weiss's prototype Q9, detail.

Weiss keeps experimenting with further prototypes that distribute micro-intervals through aliquot division and in elegant symmetry. None of these models has yet been built, but Weiss has already completed their theoretical construction with the explicit aim to simplify the building process. One can imagine that one day these prototypes will find their way into industrial production.

CONCLUSIONS

As a traveling foreigner performing throughout the Middle East, Weiss has provided a unique and multifold perspective on the entire tradition of maqāmāt. By creating a unified tuning system that incorporates diverse aspects of the maqām tradition, he is the first one to fully approach this art as a transnational phenomenon.

Like Cantemir's tanbūr scale in the $17^{\text {th }}$ century (Feldman 1996, 206-07), Weiss's instruments Q8 and Q9 respond to the Middle Eastern tuning customs, modal genres, and pitch inventories of their time through the experience of one specialized individual of European descent. The abundance of justly tuned intervals available in Weiss's extended mandal system satisfies theoretical, acoustical, and practical demands. In their application to a diversity of local and historic contexts, Weiss's $q \bar{a} n \bar{u} n s$ are consistent with an opinion on
which performers and theorists have agreed since the Congress of Cairo (d'Erlanger 2001-V, 12): As a mature tradition, the Middle Eastern maqām system can no more rely on simplistic attempts to formulate a single fundamental scale. As in Western polyphonic music, where the intonation of individual tones changes in different harmonic contexts, the Middle Eastern system comprises many modal dimensions that cannot be mapped onto one single set of 24 notes per octave. Except for the fixed intonation of the $q \bar{a} n \bar{u} n$, actual practice does not necessitate the construction of one compulsory tuning system. As conveyed by alteration signs that closely adapt principal Western and Middle Eastern notational conventions in correct adaptation, Weiss's $q \bar{a} n \bar{u} n$ system has removed the obstacles of temperament and imprecise tuning. In this manner, Weiss's current solutions to problems posed by this immensely important instrument can be understood as the most precise and comprehensive Middle Eastern tuning system of the $21^{\text {st }}$ century.

On the one hand, a foreign specialist may understand a musical tradition so well that he may be accorded lasting authority with regard to the general theory and interpretation of its repertoire. On the other hand, scholars should remain careful not to overlook the fact that Weiss's tuning system is the product of a single person. By no means could common local customs, as they are represented by Middle Eastern qānūn players (such as Ruhi Ayangil or Göksel Baktagir) or Ozan Yarman's ambitious 79-note temperament (Yarman \& Beşiroğlu 2008) simply be labeled as "inauthentic" due to a combination of acousticist and historical criteria, for they still dominate today's performance culture. Since no one else has yet adopted Weiss's proposal, one can only speculate about whether or not it may stand the test of time.

BIBLIOGRAPHY

Ak, Ahmet Şahin. 2002. Türk Musikisi Tarihi. Ankara: Akçağ Yayınları.
Ensemble Al-Kindî. 2006. Parfums Ottomans-Musique de Cour Arabo-Turque [Ottoman

Perfumes-Music of the Arabo-Turkish Court]. 2CD + booklet. Le Chant du Monde CMT 5741414.15. Distributed by Harmonia Mundi.

Arel, Hüseyin Sadettin. 1964 (1927). Türk musikisi üzerine iki konferans, edited by M. Kemal Özergin. Ankara, Turkey: Hüsnütabiat Matbaası. 1993 (ca. 1930). Türk musıkîsi nazariyatı dersleri, edited by Onur Akdoğu. Ankara, Turkey: Kültür Bakanlığı Yayınları.

Ayangil, Ruhi. 2008. "Western Notation in Turkish Music." In Journal of the Royal Asiatic Society of Great Britain and Ireland (Third Series), Vol. 18(4), 401-47.
——. 2011. Oral Communication, June 2011, Burgazadası, Turkey.
Beşiroğlu, Şefika Şehvar. 2011. Oral Communication, Apr. 2011, Istanbul, Turkey.

Chabrier, Jean-Claude. 2001 (1996). "Musical Science." In Encyclopedia of the History of Arab Science, Vol. 2: Mathematics and the Physical Sciences, edited by Rāshid, R. \& R. Morélon. London, UK: Routledge, 242-273.

Chalmers, John. 1993. Divisions of the Tetrachord. Hanover, NH: Frog Peak Music.
Daniélou, Alain. 1971 (1967). "Plurality of Cultures or Synthesis." In Asian Music, Vol. 2(2), 2-6.

D'Erlanger, Rodolphe. 2001 (1935 \& 1938). La musique arabe, Vol. I-VI. Paris, France: Geuthner.

During, Jean. 1985. "Théories et pratiques de la gamme iranienne." In Revue de Musicologie, vol. 71(1-2), 79-118.

Elçin, Şükrü (ed.). 1976. Ali Ufki. Mecmua-i saz ü söz. Istanbul, Turkey: Kültür Bakanlığ1 Yayinevi.

Farmer, Henry George. 2001 (1929). A History of Arabian Music. New Delhi, India: Goodword Books.
—_. 1929. "The Influence of Music: From Arabic Sources." In: Proceedings of the Musical Association, $52^{\text {nd }}$ Sess., 89-124. London, UK: Taylor \& Francis.

Feldman, Walter. 1996. Music of the Ottoman Court-Makam, Composition and the Early Ottoman Instrumental Ensemble. Berlin, Germany: Verlag für Wissenschaft und Bildung.

Giannelos, Dimitri. 1996. La musique byzantine. Le chant ecclésiaque grec, sa notation et sa pratique actuelle. Paris, France: L'Harmattan.

Helmholtz, Hermann von. 1954 (1885). On the Sensations of Tone, translated by Ellis, A. J. Mineola, NY: Dover.

Karadeniz, Mustafa Ekrem. 1985. Türk muslkîsinin nazariye ve esâsları. Ankara: Türkiye İş Bankası Kültür Yayınları.

Karas, Simon. 1989. Harmoniká. Des consonances (syn-phonies) par moyennes harmoniques: les intervalles musicaux. Athens, Greece: Manoutios.

Manik, Liberty. 1969. Das arabische Tonsystem im Mittelalter. Leiden, the Netherlands: Brill.

Marcus, Scott. 1993. "The Interface between Theory and Practice: Intonation in Arab Music." In Asian Music, Vol. 24(2), 39-58.

Nyffeler, Max. 2003. "Avicenna und der Golfkrieg. Anmerkung zum jüngsten Schaffen von Klaus Huber." In Neue Zeitschrift für Musik Vol. 2/2003, 18-27.

Özkan, İsmail. Hakkı. 2006 (1982). Türk Mûsıkîsi Nazariyatı ve Usûlleri. Istanbul, Turkey: Ötüken.

Öztuna, Yılmaz. 1998 (1969). Türk Musikisi Ansiklopedisi. Istanbul, Turkey: Türkiye Cumhuriyeti Milli Eğitim Basımevi.

Popescu-Judetz, Eugenia. 1999 (1973). Prince Dimitrie Cantemir. Theorist \& Composer of Turkish Music. Istanbul, Turkey: Pan.
——. 2002. Tanburi Küçük Artin. A Musical Treatise of the Eighteenth Century. Istanbul, Turkey: Pan.

Racy, Ali Jihad. 2003. Making Music in the Arab World: The Culture and Artistry of Tarab. Cambridge, UK: Cambridge University Press.

Shiloah, Amnon. 1981. "The Arabic Concept of Mode." In: Journal of the American Musicological Society. Vol. 34(1), 19-42.

Signell, Karl Lloyd. 2008 (1977). Makam: Modal Practice in Turkish Art Music. Sarasota, FL: Usul Editions.

Touma, Habib Hassan. 2003. The Music of the Arabs, translated by Schwartz, Laurie. Portland, OR: Amadeus Press.

Trapani, Christopher. 2010. Cognitive Consonance. Unpublished score, retrieved from composer in pdf format.

Tura, Yalçın. 1988 (1981): Türk mûsikîsinin mes'eleleri. Istanbul, Turkey: Pan
—__. (trans.) 2001. Dimitri Kantemiroğlu (Cantemir): Kitābu 'İlmi’l-Mūsīk̄̄ 'alā vechi'lHurūfāt (Mûsikîyi Harflerle Tesbît ve İcrâ İlminin Kitabı). Istanbul, Turkey:Yapı Kredi Yayinları.

Weiss, Julien Jalâl Ed-Dine. 2004. "Safiyuddin et la musique arabe moderne." Unpublished lecture, retrieved from author in digital format.
—__. 2005. "Les genres arabes et turcs." Unpublished work sheet, retrieved from author in digital format.
——_. 2006. "L'héritage occulté de la musique et des musiciens de cour arabes dans la musique ottomane." In Parfums ottomans-musique de cour arabo-turque, CD booklet. Le Chant du Monde, Harmonia Mundi CMT 5741414.15, 10-15.
-_.2009-11. Oral communication, Istanbul, Turkey.
Wright, Owen. 1995. "A Preliminary Version of the 'Kitāb al-Adwār'." In Bulletin of the School of Oriental and African Studies, Vol. 58(3): 455-478.
——. 2000 (1992). Demetrius Cantemir. The Collection of Notations, Vol. I, II. London, UK: SOAS Musicology Series.
—_. 2005. "Die melodischen Modi bei Ibn Sīnā und die Entwicklung der Modalpraxis von Ibn al-Munağğim zu Ṣāfì al-Dīn al-Urmawī." In Zeitschrift für die Geschichte der Arabisch-Islamischen Wissenschaften, Sonderdruck, Vol. 16, 224-308.

Yarman, Ozan \& Ş. Şehvar Beşiroğlu. 2008. "Türk Makam Müziği’nde Nazariyat-İcra Örtüş Mezliğine bir Çözüm: 79-Sesli Düzen." In: İstanbul Teknik Üniversitesi Dergisi B, Vol. 5 (2), 23-34. Istanbul, Turkey: Istanbul Technical University.

Yektâ, Raûf. 1921 (1913). "La musique turque." In Encyclopédie de la Musique et Dictionnaire du Conservatoire, Vol. 1(5), 2945-3064.

[^0]: ${ }^{1}$ Throughout this paper, the term "quarter tone" is written in quotation marks when it relates to a pitch located roughly half way between two semitones, such as in the context of Arab performance practice.
 ${ }^{2}$ In his treatise, Theoritikon Mega (1881), Chrysanthos of Madytos simplified the modal system and the notation of Byzantine music. The octave was divided into a 72 -step gamut (Giannelos 1996, 24) that is still being used for the theoretical description of the Byzantine modes (Karas 1989).

[^1]: ${ }^{3}$ Plural of $m a q a \bar{m}$.

[^2]: ${ }^{4}$ The first attempts at a revised theory that would reconcile the tradition with Westernizing tendencies was laid out by Raûf Yektâ in 1921 (Feldman 1996, 205; Ayangil 2008, 423), extending Ṣafìyy al-Dīn’s 17 -note scale to 24 pitches per octave and introducing a modified form of Western staff notation. Hüseyin Sadettin Arel was appointed head of the Conservatory for Turkish Music of Istanbul (then Dar-ül el-Han) in 1943 (Ak 2002, 162). Arel's theoretical efforts began during the 1920s (Arel 1964) and were concretized in collaboration with Suphi Ezgi during the 1930s while Ezgi directed the scientific committee of national culture (Ayangil 2008, 425).

[^3]: ${ }^{5}$ In order to be divided into aliquot parts, numerator and denominator of an interval ratio must be multiplied by the same number as that of the desired divider. If, for example, a fourth $4 / 3$ shall be divided into three aliquot parts, its numerator and denominator are both multiplied by three: $(4 / 3)=(12 / 9)$. The obtained set of intervals describes an excerpt from a sub-harmonic spectrum, and the denominator of each fraction equates to the numerator of the next one: $(4 / 3)=((12 / 11) *(11 / 10) *(10 / 9))$.
 ${ }^{6}(256 / 243)=(512 / 486)=((512 / 499) /(499 / 486))$

[^4]: 7 "eksik bir kopyası."

